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Abstract

Mechanical joints often affect structural response, causing localized non-linear stiffness and damping
changes. As many structures are assemblies, incorporating the effects of joints is necessary to produce
predictive finite element models. In this paper, we present an adjusted Iwan beam element (AIBE) for
dynamic response analysis of beam structures containing joints. The adjusted Iwan model consists of a
combination of springs and frictional sliders that exhibits non-linear behavior due to the stick–slip
characteristic of the latter. The beam element developed is two-dimensional and consists of two adjusted
Iwan models and maintains the usual complement of degrees of freedom: transverse displacement and
rotation at each of the two nodes. The resulting element includes six parameters, which must be determined.
To circumvent the difficulty arising from the non-linear nature of the inverse problem, a multi-layer feed-
forward neural network (MLFF) is employed to extract joint parameters from measured structural
acceleration responses. A parameter identification procedure is implemented on a beam structure with a
bolted joint. In this procedure, acceleration responses at one location on the beam structure due to one
known impulsive forcing function are simulated for sets of combinations of varying joint parameters. A
MLFF is developed and trained using the patterns of envelope data corresponding to these acceleration
histories. The joint parameters are identified through the trained MLFF applied to the measured
acceleration response. Then, using the identified joint parameters, acceleration responses of the jointed
beam due to a different impulsive forcing function are predicted. The validity of the identified joint
parameters is assessed by comparing simulated acceleration responses with experimental measurements.
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The capability of the AIBE to capture the effects of bolted joints on the dynamic responses of beam
structures, and the efficacy of the MLFF parameter identification procedure, are demonstrated.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Mechanical joints can have a significant effect on the dynamics of structures that contain
them. Bolted or riveted joints cause local stiffness and damping changes and are often the
primary source of energy dissipation and damping in assembled structures. In many such
structures, damping due to relative interfacial joint motion can account for as much as 90%
of the total [1]. Thus, accurate prediction of dynamic response of assembled structures to
external excitation often hinges on efficacious modelling of the effect of the joint on structural
behavior.

Considerable effort has being expended attempting to characterize the non-linear behavior of
structures containing joints. Crawley and Aubert [2] proposed an experimental technique called
‘‘force-state mapping’’ to identify structural elements such as joints containing strong non-
linearities, in which the force transmission properties of an element were measured as a function
of its mechanical states. Wang and Sas [3] presented a method for identifying optimal linear joint
stiffness and damping parameters from measured modal parameters (resonant frequency and
damping ratio). Ren and Beards [4] used experimental frequency response data to extract optimal
linear joint parameters, and Ren et al. [5] developed a general purpose technique based on multi-
harmonic balance (MHB) to identify the properties of non-linear joints from dynamic test data.
Liu and Ewins [6] presented a ‘‘more general and more practical’’ method to extract the
‘‘effective’’ mass, stiffness and damping parameters of a joint element from measured frequency
response functions. Note that a common characteristic of all of the above is that no parametric
model of the joint is required.

Researchers have long been interested in developing predictive dynamic parametric models of
mechanical joints for reliable structural response analysis. The successful modelling of joints
depends on understanding and reproducing the basic physics associated with a jointed interface.
Various studies have identified micro- and macro-slip occurring along the interface as the source
of change of interface stiffness and energy dissipation, which constitutes the hysteresis mechanism
of joints. Typically, the normal interface pressure across a dynamically loaded joint is not
uniformly distributed, and micro-slip first occurs in regions where the contact pressure is
insufficient to prevent it. The interface is, thus, divided into zones of ‘‘stick’’ and ‘‘slip’’. As the
magnitude of the transmitted load increases, slip zones enlarge and coalesce, resulting in macro-
slip and the familiar hysteretic force–displacement joint characteristic. This has been
demonstrated experimentally for shear lap joints, loaded axially and torsionally, by Gaul and
Lenz [7].

The notion that the non-linear hysteresis behavior of a joint is the result of micro- and macro-
slip occurring along its interface was motivation for developing detailed finite element joint
models, which requires solving a contact problem at the interface using an extremely fine mesh.
While it is possible to realistically model the behavior of the joint in this manner, the resulting
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joint model is impractical for dynamic analysis of an arbitrary structure containing the joint. In
fact, it is computationally prohibitive and likely to remain so for some time [8]. Lee et al. [9]
proposed a technique to reduce the number of degrees of freedom of a detailed finite element
contact model. Chen and Deng [10] noted that finite element analysis can provide a flexible and
reliable tool for understanding and characterizing the non-linear damping behavior of structural
joints and proposed to use the finite element method to generate numerical data for a typical slip
joint.

A lumped-parameter model of small dimension to simulate the non-linear dynamic behavior of
a joint and, particularly, its effect upon the surrounding structure has long been deemed desirable.
It has been common to represent the friction occurring at contact interfaces by a Coulomb friction
model [11–14]. However, a single Coulomb friction element is only capable of describing either the
full slip or full stick situation. Menq et al. [15,16] developed a one-dimensional, physically
motivated micro-slip model that allows partial slip on the friction interface; however, this
model is not suited to response analysis of complex structures. At present, non-linear, reduced
order, full-joint models that can be effectively used in structural dynamic response analysis do not
exist [8].

In this paper, we present the so-called adjusted Iwan beam element (AIBE) to simulate the
non-linear effects of a bolted joint on beam structures. Iwan [17,18] used parallel–series and
series–parallel spring–slider models to describe the hysteretic behavior of materials and structures.
The series–parallel formulation leads to a constitutive relation in the form of strain as a function
of stress, while the parallel–series formulation leads to stress as a function of strain, which makes
it favorable for our analysis. Thus, we will only discuss the parallel–series model. Iwan’s
models, which are networks of springs and frictional sliders, reasonably simulate joint
behavior since the observed hysteresis is achieved through stick–slip behavior of the sliders.
An experimental investigation by Gaul and Lenz [7] demonstrated that the one-dimensional
behavior of a lap joint can be represented by an adjusted Iwan model; this will be illustrated in a
later section.

The adjusted Iwan beam element proposed herein consists of two adjusted Iwan models
leading to the usual arrangement of degrees of freedom in the two-dimensional beam
element: transverse displacement and rotation at each of the two nodes. Three parameters are
required to characterize each adjusted Iwan model, which must be determined initially. The
parameter identification constitutes an inverse problem, and a multi-layer feed-forward neural
network (MLFF) is employed to extract joint parameters from measured structural acceleration
response data.

The parameter identification procedure was implemented for a beam structure containing a
bolted joint. Acceleration responses to a known impulsive forcing function at a fixed location on
the beam were simulated for sets of combinations of joint parameters. A MLFF was developed
and trained using envelope data from aforementioned acceleration time histories. Specific joint
parameters were then identified using the trained MLFF on the measured acceleration response.
Then, using the identified joint parameters, acceleration responses of the jointed beam due to
another different impulsive forcing function were predicted. The efficacy of the AIBE and our
parameter identification procedure were validated through comparisons of numerical and
experimental acceleration responses to two different impulsive forcing functions at various points
throughout the structure.
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2. The adjusted Iwan model

2.1. Iwan’s parallel–series model

The parallel–series model of Fig. 1 comprises a series of Jenkins elements. Each Jenkins element
consists of a linear spring with elastic stiffness k=N in series with a Coulomb slider with critical
slipping force f �i =N ði ¼ 1; 2;y;NÞ: The Jenkins element is an ideal elasto-plastic unit. Fig. 2
shows its force–deformation characteristic.

Let the number of Jenkins elements N-N; and let f �i be defined in terms of a distribution
function jð f �Þ; then jð f �Þ df � is the fraction of elements having a critical slipping force between
f � and f � þ df �: The force–displacement hysteresis loop associated with the parallel–series
combination can then be obtained by analyzing groups of Jenkins elements under varying
stick–slip conditions. Here, we express it conveniently as

f ¼ f ðk; x; _x;jð f �ÞÞ; ð1Þ
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Fig. 1. Iwan’s one-dimensional parallel–series model.

Fig. 2. Force–deformation relation of a single Jenkins element.
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where x is the extension of the elements and _x is the displacement history. When all of the Jenkins
elements slip, the system reaches its ultimate force

fy ¼
Z

N

0

f �jð f �Þ df �: ð2Þ

The distribution function of critical slipping force jð f �Þ can take a number of forms. Following
Iwan [17], we choose jð f �Þ to be a band-limited function centered about fy with width D and unit
area, as shown in Fig. 3. Defining the coefficient

b ¼
D

2fy

; ð3Þ

the distribution function jð f �Þ can be described as

jð f �Þ ¼
1

2bfy

; fyð1 � bÞpf �pfyð1 þ bÞ;

jð f �Þ ¼ 0; otherwise:

8><
>: ð4Þ

2.2. Adjusted Iwan model

The ultimate force fy indicates the onset of macro-slip. In Iwan’s model, the stiffness of the
system becomes zero after the force reaches fy; which contradicts the experimental observation by
Gaul and Lenz [7] that a joint possesses some stiffness even during macro-slip. To address this
discrepancy, we add an additional linear elastic spring ka in parallel with the Iwan model as shown
in Fig. 4. The stiffness of the additional spring is that of the system at the onset of macro-slip. The
ratio of spring coefficients is then defined to be

a ¼
ka

k
: ð5Þ

The corresponding force–displacement relation of the adjusted Iwan model can be obtained by
changing the original stiffness k to k � ka and adding kax to the original force–displacement
relation in (1); i.e.,

fadjusted ¼ f ðk � ka;x; _x;jð f �ÞÞ þ kax: ð6Þ

Typical hysteresis loops of an Iwan parallel–series model ða ¼ 0:0Þ and an adjusted Iwan model
ða ¼ 0:167Þ; in terms of a transient deformation history shown in Fig. 5, are depicted in Figs. 6(a)
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Fig. 5. The deformation history corresponding to the hysteresis loops of Fig. 6.

Fig. 4. Adjusted Iwan model.
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Fig. 6. Typical hysteresis loops in terms of the deformation history shown in Fig. 5. (a) Iwan’s parallel–series model.

(b) Adjusted Iwan model.
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and (b), respectively. Other parameters of the models used are b ¼ 1:0; fy ¼ 54 N; and k ¼
6:5255 � 107 N=m: The hysteresis loop of the adjusted Iwan model appears similar to the loops
obtained experimentally by Gaul and Lenz [7].

3. The adjusted Iwan beam element (AIBE)

3.1. Linear elastic beam element

The linear elastic beam element can be reduced to rigid bars and two springs with
constant stiffnesses k1 and k2; as shown in Fig. 7, where h and L are the fixed height and
length of the element, respectively. There are one translational and one rotational degree of
freedom at each end of the element; i.e., wi and yi ði ¼ 1; 2Þ: The corresponding shear forces and
bending moments are Q1; Q2 and M1; M2; respectively. The extensional deformations of the two
springs are given by

D1 ¼
L

2
ðy1 þ y2Þ þ ðw1 � w2Þ; D2 ¼

h

2
ðy1 � y2Þ; ð7a;bÞ

which cause internal linear elastic forces in the springs

f1 ¼ k1D1; f2 ¼ k2D2: ð8a;bÞ

The shear forces and bending moments at the two ends of the element are due to the internal
spring forces f1 and f2: They are related by

Q1 ¼ f1; M1 ¼
L

2
f1 þ

h

2
f2; ð9a;bÞ

Q2 ¼ �f1; M2 ¼
L

2
f1 �

h

2
f2: ð9c;dÞ

Choosing the stiffnesses of the two springs to be

k1 ¼ 12
EI

L3
; k2 ¼ 4

EI

Lh2
; ð10a;bÞ
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Fig. 7. Linear elastic beam element.
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in which EI is the bending stiffness of the beam, and substituting Eqs. (7), (8) and (10) into
Eq. (9), we obtain

Q1

M1

Q2

M2

8>>><
>>>:

9>>>=
>>>;

¼
EI

L

12

L2

6

L
�

12

L2

6

L
6

L
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6

L
2

�
12
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�

6
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6
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6

L
4

2
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3
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w1
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w2

y2

8>>><
>>>:

9>>>=
>>>;
: ð11Þ

Clearly, the force–displacement relation for the element given by Eq. (11) is equivalent to that
of the two-dimensional FE beam element.

3.2. Adjusted Iwan beam element

The adjusted Iwan beam element (AIBE) is obtained by replacing the two springs in the linear
elastic element shown in Section 3.1 with two one-dimensional adjusted Iwan models, as shown in Fig.
8. For the adjusted Iwan beam element, Eqs. (7) and (9) remain valid. However, the internal forces f1

and f2 become functions of the deformation histories associated with the two adjusted Iwan models,

Q1 ¼ f1ðD1; _1Þ; M1 ¼
L

2
f1ðD1; _1Þ þ

h

2
f2ðD2; _2Þ; ð12a;bÞ

Q2 ¼ �f1ðD1; _1Þ; M2 ¼
L

2
f1ðD1; _1Þ �

h

2
f2ðD2; _2Þ; ð12c;dÞ
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Fig. 8. (a) Adjusted Iwan model ði ¼ 1; 2Þ: (b) Adjusted Iwan beam element.
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in which D1 ¼ ðL=2Þðy1 þ y2Þ þ ðw1 � w2Þ and D2 ¼ ðh=2Þðy1 � y2Þ; _1 and _2 represent the
deformation histories of D1 and D2; respectively. The hysteresis loops associated with f1 and f2 can
be determined as long as the distribution functions j1ð f �1 Þ and j2ð f �2 Þ for the two adjusted Iwan
models are given. Here we will use the same band-limited function as in Section 2.1; thus, there are
three parameters that must be identified for each adjusted Iwan element: the distribution coefficients
bi; ultimate forces fyi; and stiffness ratios ai ði ¼ 1; 2Þ: Parameter identification will be discussed in
Section 5.

4. Dynamic response analysis of jointed beam structures

In this analysis, adjusted Iwan beam elements are employed to represent the joints, and the
remainder of the structure is represented by linear elastic beam elements. We assume that the
numbers of linear elastic beam elements and adjusted Iwan beam elements are n and m;
respectively. For the ith elastic beam element ði ¼ 1; 2;y; nÞ; the equations of motion in local
co-ordinates are

fe
elastic i þ fe

internal i ¼ Me
i
.de

i þ Ke
i d

e
i ð13aÞ

de
i ¼ fw1; y1; w2; y2g

T
i ; fe

elastic i ¼ fQ1; M1; Q2; M2g
T
i ; ð13b; cÞ

in which Me
i and Ke

i are element mass and stiffness matrices; fe
elastic i is the element external force

vector; fe
internal i is the element internal force vector due to adjoining elements; and de

i is nodal
displacement vector. For the ith adjusted Iwan beam element ði ¼ 1; 2;y;mÞ; the element
equations of motion in local co-ordinates are

fe
AIBE i þ fe

internal i ¼ Me
i
.de

i þ fe
s i ¼ Me

i
.de

i þ

f1ðD1; _1Þ

L

2
f1ðD1; _1Þ þ

h

2
f2ðD2; _2Þ

�f1ðD1; _1Þ

L

2
f1ðD1; _1Þ �

h

2
f2ðD2; _2Þ

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

i

; ð14Þ

where Me
i is presumed the same as that for the elastic beam element in Eq. (13a); fe

s i is the internal
element nodal force vector due to deformation; and fe

AIBE i is the element external force vector.
The equations of motion of the system are obtained by considering force equilibrium at each

node. Note that the summation of element internal force vectors fe
internal i ði ¼ 1; 2;y; n þ mÞ

always equals zero. If the total number of degrees of freedom in the structure is nd ; then the
assembly of n equations of motion for the linear elastic beam elements with m equations of motion
for the adjusted Iwan beam elements in global co-ordinates gives

ðMelastic þMAIBEÞ.dþ Kelasticdþ FsðdÞ ¼ Fexternal ; ð15Þ

in which

Melastic ¼
Xn

i¼1

GT
i
%Me

iGi; %Me
i ¼ TTMe

iT; ð16aÞ
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MAIBE ¼
Xm

i¼1

*GT
i
%Me

i
*Gi; %Me

i ¼ TTMe
iT; ð16bÞ

Kelastic ¼
Xn

i¼1

GT
i
%Ke

iGi; %Ke
i ¼ TTKe

iT; ð16cÞ

Fs ¼
Xm

i¼1

*GT
i
%fe

s i; %fe
s i ¼ TTfe

s i; ð16dÞ

Fexternal ¼
Xn

i¼1

GT
i
%fe

elastic i þ
Xm

i¼1

*GT
i
%fe

AIBE i; %fe
elastic i ¼ TTfe

elastic i; %fe
AIBE i ¼ TTfe

AIBE i: ð16eÞ

Here, Gi and *Gi are the Kronecker matrices reflecting the connectivity information of the ith
linear elastic beam element and adjusted Iwan beam element, respectively, and T is the co-
ordinate transformation matrix. The dimensions of *Gi and Gi are 4 � nd ; since every beam
element contains four degrees of freedom. The dimensions of Melastic; MAIBE ; Kelastic are nd � nd

and the dimensions of Fs and Fexternal are nd � 1:
The formulae above do not include terms related to material damping, which plays an

important role in system response. In our analysis, material damping is addressed in the same way
as in linear response analysis. For example, if Rayleigh damping is considered, we simply add a
damping term to Eq. (15) to get

ðMelastic þMAIBEÞ.dþ C’dþ Kelasticdþ FsðdÞ ¼ Fexternal ; ð17Þ

where

C ¼ %aðMelastic þMAIBEÞ þ %bðKelastic þ KAIBE
e Þ: ð18Þ

Here, KAIBE
e is the contribution of the joint stiffness to the system when all joints are modelled

by linear elastic beam elements, and %a; %b are Rayleigh damping coefficients.
The dynamic response of the system can be obtained by directly integrating the non-linear

equations of motion (17). An explicit formulation, the forward incremental displacement central
difference method [19], is employed in our analysis. In this scheme, the unknown response at
future time is explicitly computed in terms of known responses up to and including the present
time. Since no equilibrium iterations are required, the explicit formulation is very efficient for
solving non-linear equations of motion.

5. Parameter identification

5.1. Parameters of the adjusted Iwan beam elements

Determination of the parameters of the adjusted Iwan beam elements from the dynamic
responses of the structure constitutes an inverse problem. The adjusted Iwan beam element, as
presented, consists of two one-dimensional adjusted Iwan models. As noted earlier, six parameters
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must be identified for each joint: the distribution coefficients bi; ultimate forces fyi; and stiffness
ratios ai ði ¼ 1; 2Þ:

The distribution coefficient bi controls the shape of the initial loading curves (in both positive
and negative senses) and of the reloading/unloading curves prior to the occurrence of macro-slip
in the hysteresis loops of the adjusted Iwan model; the ultimate force fyi determines the force level
at which macro-slip occurs; and the ai provides the stiffness of the adjusted Iwan model after
macro-slip. The area enclosed by a single hysteresis loop represents the energy dissipated during a
cycle of deformation. Comparatively, both fyi and ai have a greater effect on the enclosed area of
the hysteresis loop and resulting energy dissipation than the distribution coefficient bi:

To enhance the efficiency of the identification procedure, we assume that the two adjusted Iwan
models in the adjusted Iwan beam element share the same parameters, and we set the distribution
coefficient bi to 1.0. The choice of bi ¼ 1:0 ensures that the distribution function of critical
slipping force has a non-zero value 1=ð2fyiÞ in the range ½0; 2fyi
; i.e., micro-slip will occur in the
joint interface even at very low forcing levels, which is consistent with experimental observations
[20]. Thus, only two parameters of the original six remain to be identified. While this may seem to
be somewhat constraining, retaining two free parameters is sufficient to represent the complicated
behavior of the actual joint with the AIBE.

5.2. Neural networks in inverse problems

Parameter identification problems lack unique solution and are, thus, often formulated in an
optimization framework in which the parameters of the assumed model are found within the
predefined space of variables to minimize the difference between measured and computed
responses in some norm. However, because of the highly non-linear nature of joint behavior, the
application of classical optimization methods, many of which are gradient-based, to our inverse
problem becomes problematic, and we resort to a ‘‘soft’’ method.

Soft computing encompasses a large class of (often) biologically inspired methods, including
neural networks and genetic algorithms, which are frequently applied to inverse problems. These
methods are model-free and robust to imprecision and uncertainty, making it possible to solve
otherwise intractable problems [21,22]. A survey paper summarizing the application of
neural networks to problems in computational mechanics was recently published by Yagawa
and Okuda [23].

We have adopted the multi-layer feed-forward (MLFF) neural network for our inverse problem
[21,24–27]. Neural networks are massively parallel computational models. Through training,
neural networks learn and generalize complex relations and associations between input and
output data. The trained neural networks are then capable of estimating output given new input
according to the mapping or association resulting from the training procedure. Fig. 9 shows a
typical MLFF with bias, consisting of four layers of neurons. The outer layers are input and
output; the intermediate layers are hidden. Neurons or nodes in each layer are fully connected to
all nodes in the adjoining layers. Each neuron receives signals through its incoming connections,
performs some simple operations (adding the received signals to the bias to get an input value,
calculating the output value by applying a transfer function to the input value), and sends
signals through its outgoing connections. The strength of each connection depends on its
weight. Learning is a procedure in which the connection weights and biases are updated using a
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back-propagation training algorithm such that the given input produces the known corresponding
output. The resulting knowledge is stored in the connection weights and biases [28].

The application of neural networks to inverse problems consists of three stages: (1)
determination of the neural network architecture, (2) selection of training patterns, and (3)
training. The three are interrelated and interactive. For the MLFF, error back-propagation is the
most popular and efficient training algorithm [29]. Convergence of error back-propagation is
strongly affected by the neural network architecture and the quality and quantity of selected
training patterns [30]. The quality and quantity of training patterns also have strong influence on
the generalization capability of the neural network, and application of some kind of regularization
of the input and output data before training has become standard practice [31]. With respect to
network architecture, the number of nodes in the input and output layers corresponds to the
number of elements of input and output, respectively. However, there is no rigorous method for
selecting the appropriate numbers of hidden layers and neurons, although the automatic node
generation of neural networks has been studied [32]. Trial and error is still the most widely used
method in practical applications.

The learning capability of a neural network depends on the number of hidden layers and the
number of nodes in each. If the size of the neural network is too small compared to the complexity
of the mapping between input and output data, the training procedure can be slow to converge, or
the neural network can fall into a local minimum. On the other hand, if the neural network is too
large, the training time increases dramatically, and the likelihood of over-fitting, in which case the
neural network produces very accurate output upon input of training samples but gives large
errors when subjected to a new input set, increases.

5.3. A parameter identification procedure by MLFF neural net

For a linear viscously damped structure, the envelope of free response for any mode decays
exponentially with an exponent proportional to the modal damping. If the envelope is not
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exponential, the damping is not purely linear viscous. In a jointed structure, dissipation occurs not
only by viscous loss but also through micro- and macro-slip occurring in the joint interfaces.
Changes in damping and stiffness at the joints are amplitude-dependent (thus, it is not reasonable
to derive the ‘‘equivalent’’ modal damping from the decay envelope). For jointed structures,
therefore, decay response is the best information we can use to gain insight into the damping, as
with the decreasing of vibratory motion, the system damping (and stiffness) is changing
continually with time, showing different properties at different vibration amplitudes. In our
parameter identification procedure, we use envelopes of measured acceleration responses
following impact excitations, which are readily obtained, to identify joint parameters associated
with the adjusted Iwan beam elements. Our parameter identification procedure using the MLFF
employs the following steps:

(1) A number of combinations of the two free joint parameters are predefined. For each
combination, the dynamic response is determined by a direct finite element analysis.

(2) The upper envelope of the resulting acceleration time history at the beam location of interest
is calculated and fitted by a polynomial. The polynomial is evaluated at predefined points in
time producing discrete data from the envelope. This data and the model parameters are
regularized producing a single training pattern. A set of training patterns are obtained for all
the combinations in step (1).

(3) The MLFF neural network is implemented and trained using the above set of training
patterns. The error back-propagation algorithm is employed. In each training pattern, the
input is the envelope data from step (2), and the output is the predefined combination of the
two joint parameters.

(4) System accelerations from laboratory experiments are then used to generate the correspond-
ing envelope data. The same regularization scheme used in step (2) is applied to the
experimental data.

(5) This data is applied to the trained MLFF to identify the model parameters corresponding to
the experimental structure. This completes the inverse analysis.

6. Impulsive load experiments on beam structures

6.1. Test set-up and procedure

Two different beam configurations were prepared for impact hammer testing: a jointed beam,
and a monolithic beam. The jointed beam structure, shown in Fig. 10, made of low-carbon steel,
consists of a simple beam that incorporates a double shear lap joint in its center. When installed,
the bolts were torqued to 6:22 N m; which provided sufficient clamping force to preserve the
integrity of the beam while allowing for obvious hysteresis to take place. The monolithic beam
structure was machined from a single piece of the same low-carbon steel. With bolts installed, it is
identical to the jointed beam but without the lap joint interfaces. Thus, any differences seen in the
dynamic response of the two structures are assumed to be caused by the joint.

To achieve a high degree of repeatability in the hammer tests, both beams were suspended from
the ceiling by a nylon cord at each end to approximate free–free boundary conditions. The data
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acquisition system used in all tests is shown in Fig. 11. Input forces were measured by the integral
force transducer mounted on the PCB Model 086C04 impact hammer, to which a hard plastic tip
was attached. Accelerations were measured by PCB Model 356A11 miniature tri-axial
accelerometers attached at points A and B on the beams. All input forces and output
accelerations were applied or measured in the z-direction, as indicated in the figure.

An experimental modal analysis was performed for the monolithic beam in order to determine
modal parameters and Rayleigh damping constants. The accelerometer was fastened to the beam
at point A, and hammer excitation was applied at points along the beam to obtain the frequency
response functions. The bandwidth of the Fourier analyzer, Tektronix Model 2630, was 2 kHz;
allowing measurement of the first five modes of the beam. Natural frequencies and modal
damping ratios were determined from the FRFs using Diamond software [33]. The modal
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Fig. 10. The beam structure with one double lap joint.

Suspension 1 Suspension 2

Fourier analyzer

 Signal
conditioner/amplifier
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Point BPoint A

Fig. 11. Experimental set-up for impact hammer test.
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parameters were used to verify the FE model and to determine the linear damping matrix C;
assumed identical for the monolithic and jointed beams.

A series of impulse response experiments was then completed for both the monolithic and
jointed beams. The beams were struck by the instrumented hammer at point A. The input force
and the acceleration response at points A and B were measured. For the monolithic beam a single
forcing level, and for the jointed beam two different forcing levels, were used, and for both, a
measurement bandwidth of 5 kHz was employed.

6.2. Experimental results

The first five natural frequencies and modal damping factors obtained from the monolithic
beam are summarized in Table 1.

For the monolithic beam, Fig. 12 shows the measured input force, as well as the synthesized
forcing function used for numerical simulation in Section 7.2. The measured accelerations at
points A and B are shown in Fig. 13.

The two forcing levels employed in tests of the jointed beam are denoted hard hit and soft hit.
Figs. 14 and 15 show the measured hard hit input force, along with the synthesized forcing
function used for numerical simulation in Section 7.3, and resulting accelerations. Similar results
for the soft hit are given in Figs. 16 and 17.
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Fig. 12. Excitation of the monolithic beam: (a) Forcing functions. (b) A detailed view. ——, Measured forcing

function; - - - - -, forcing function used in numerical simulation.

Table 1

Modal survey of the monolithic beam

Mode

1st 2nd 3rd 4th 5th

Natural frequency (Hz) 139.0 341.3 758.0 1092.6 1962.6

Modal damping ratio (%) 0.12 0.06 0.04 0.03 0.02
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Fig. 15. Measured acceleration histories for the jointed beam, hard hit test. (a) Point A. (b) Point B.
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Fig. 13. Measured acceleration histories for the monolithic beam. (a) Point A. (b) Point B.

Y. Song et al. / Journal of Sound and Vibration 273 (2004) 249–276264



Examination of Figs. 13, 15 and 17 illustrate the differences observed in acceleration response
between the monolithic and jointed beams. The damping in the monolithic beam is known to be
amplitude-independent. Clearly, the jointed beam is more highly damped than the monolithic
beam. In the jointed beam, the impact causes a response that initially decays very rapidly
(i.e., more damping) but then reverts to a decay rate similar to that of the monolithic beam once
the level of vibration decreases sufficiently. The soft hit causes a response that appears more like
the response of the monolithic beam than that of the hard hit, but still different. These
observations can be explained by the behavior of the joint. At small amplitudes, the joint
hysteresis loops are nearly straight lines enclosing little area, meaning that little energy is
dissipated in each cycle. As the amplitude increases, the loops enclose more area, which implies
increased energy dissipation.
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7. Parameter identification of the jointed beam structure

7.1. Finite element models

Finite element models were developed to simulate the impulse response of both the monolithic
and jointed beams, as shown in Fig. 18. The monolithic beam was discretized into nine linear
elastic beam elements, while the jointed beam was represented by one adjusted Iwan beam element
(element no. 5), and eight linear elastic beam elements. The dimensions and material properties of
these elements are given in Table 2.

A numerical modal analysis was performed using the linear finite element model for the
monolithic beam. The first five natural frequencies are compared in Table 3. The maximum error
compared to the experimental data was found to be 1.36% in the fifth mode, a very good result.

7.2. Determination of the system damping matrix

Eq. (17) requires knowledge not only of the parameters of the joint but also the linear damping
matrix C: Rayleigh damping is assumed; thus, the Rayleigh damping coefficients %a and %b were
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Fig. 18. Finite element mesh for the monolithic and jointed beams.

Table 2

Properties of the beam elements

Elastic beam element Adjusted Iwan beam element

Area of cross-section A ðm2Þ 1:61 � 10�4 4:84 � 10�4

Moment of inertia I ðm4Þ 5:42 � 10�10 1:46 � 10�8

Mass density r ðkg=m3Þ 7:95 � 103 7:95 � 103

Young’s modulus E (Pa) 2:0 � 1011 2:0 � 1011

Table 3

Comparison of measured and computed natural frequencies for the monolithic beam

Mode

1st 2nd 3rd 4th 5th

Measured natural frequency (Hz) 139.0 341.3 758.0 1092.6 1962.6

Computed natural frequency (Hz) 138.8 338.5 755.9 1099.4 1989.2

Error (%) �0.14 �0.83 �0.28 +0.62 +1.36
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determined. For the monolithic beam, the first two computed natural frequencies are

o1 ¼ 872:2 rad=s; o2 ¼ 2126:7 rad=s ð19Þ

and the first two experimentally determined damping ratios are

B1 ¼ 0:0012; B2 ¼ 0:0006; ð20Þ

from which

%a ¼
2o1o2ðB1o2 � B2o1Þ

o2
2 � o2

1

¼ 2:000 s�1; ð21aÞ

%b ¼
2ðB2o2 � B1o1Þ

o2
2 � o2

1

¼ 1:220 � 10�7 s: ð21bÞ

For verification, a numerical simulation of the impact hammer test on the monolithic beam
described in Section 6 was completed, using the derived damping matrix and forcing function in
Fig. 12. The simulated acceleration histories, with their envelopes, are compared with
experimental results in both time and frequency domains in Figs. 19 and 20, for points A and
B, respectively. To determine the degree of agreement between the two, we introduce the
normalized envelope error function (NEE),

NEEðtÞ ¼
fsimðtÞ � fexpðtÞ
max½ fexpðtÞ


����
����; ð22Þ

where fsimðtÞ and fexpðtÞ are the simulated and experimental acceleration envelope functions,
respectively and t represents time. For the envelopes at point A, examining 20 points, the largest
NEE is 4.1% and the average NEE is 2.5%; at point B, the two numbers are 6.5% and 2.9%,
respectively. The reasonable agreement between simulated and experimental acceleration
envelopes demonstrates the validity of the damping matrix, which will be used in the analysis
of the jointed beam. We note, however, that the computed accelerations are sensitive to %a and %b:
In general, some model updating may be required to bring the computed and measured
acceleration responses into agreement.

7.3. Parameter identification for the bolted joint

The parameters of the jointed beam can now be determined by using the acceleration at
point A recorded during the hard hit test described in Section 6. Following this, the acceleration
response of the jointed beam due to a soft hit is predicted using the previously identified
parameters.

In the identification procedure, the MLFF with one hidden layer was developed; input data was
the upper envelope of the hard hit acceleration time history of the jointed beam at point A. Since
each envelope contains 25 points, the input layer of the MLFF has 25 neurons, and by our
previous assumptions, just two adjusted Iwan beam element parameters will be identified:
fy1 ¼ fy2 and a1 ¼ a2: Thus, the output layer of the MLFF has two neurons. There are 10 neurons
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in the hidden layer, and the transfer functions in the hidden and output layers are the hyperbolic
tangent sigmoid function ‘‘tansig’’ and the hard limit function ‘‘purelin’’, respectively. They are
defined as [34]

tansigðxÞ ¼
2

1 þ e�2x
� 1; purelinðxÞ ¼ x: ð23a;bÞ

The MLFF with bias is shown in Fig. 21. To train the MLFF, the response of the system to the
forcing function measured in the hard hit test was determined by setting the ultimate forces fyi to
30, 40, 50, 60, 70, 80 N and the stiffness ratio ai to 0.1, 0.15, 0.2, 0.25, 0.3. These combinations of
ai and fyi generated a total of 30 normalized acceleration records at point A, which led to the 30
envelopes used to train the MLFF. Fig. 22 shows all 30 regularized envelopes, as well as that
obtained experimentally for the actual beam containing the joint. The measured envelope sits
within the 30 samples, which indicates that the actual system parameters were within the given
range of each parameter. Once the training procedure was completed, the experimentally obtained
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Fig. 19. Measured and simulated responses, at point A, for the monolithic beam. (a) Measured acceleration.

(b) Simulated acceleration. (c) Envelopes of accelerations. (d) FFT of accelerations. ——, Measured results; - - - - -,

simulated results.
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Fig. 20. Measured and simulated responses, at point B, for the monolithic beam. (a) Measured acceleration.
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Fig. 21. The MLFF neural network with bias used in our problem.
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envelope of the acceleration time history at point A was applied to the MLFF to recover the joint
parameters of the actual system.

An error back-propagation algorithm was used to train the MLFF in MATLAB. Fig. 23 shows
the relative errors of the two parameters for the 30 samples after 250 training epochs. The trained
MLFF gave the following values for the identified joint parameters:

fyi ¼ 54:3 N; ai ¼ 0:167; ði ¼ 1; 2Þ: ð24Þ
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These parameters, along with bi ¼ 1:0; were used in the numerical simulation of the hard hit
test. The simulated acceleration histories and their envelopes are compared with experimental
results in both time and frequency domains in Figs. 24 and 25, for points A and B, respectively.
The numerical results show good correspondence with experimental results. At point A, the
largest NEE is 4.2% and the average NEE is 2.1%; at point B, the two numbers are 10.1% and
2.1%, respectively. Fig. 26 shows the computed hysteresis loops for the adjusted Iwan models 1
and 2 within the joint.

Applying these parameters to the soft hit test resulted in the comparisons of Figs. 27
and 28. Again, computational and experimental results agree fairly well. At point A, the largest
NEE is 7.1% and the average NEE is 3.1%; at point B, the numbers are 10.1% and 4.1% ,
respectively. Fig. 29 shows the computed hysteresis loops for adjusted Iwan models 1 and 2 within
the joint.
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Fig. 24. Measured and simulated responses, at point A, for the jointed beam, hard hit test. (a) Measured acceleration.
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simulated results.
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8. Conclusions

An adjusted Iwan beam element (AIBE) has been developed that simulates the non-linear
dynamic behavior of bolted joints in beam structures. The element is compatible with the two-
dimensional linear elastic beam finite element and is, thus, easily implemented.

A general method for non-linear dynamic analysis of beam structures with bolted joints is
presented based upon use of the AIBE. Implementation requires initial determination of the
parameters of each AIBE. For this, multi-layer feed-forward neural networks are employed to
extract joint parameters from measured structural responses. The parameter identification
procedure is applied to a beam structure with a single bolted joint. The comparison of numerical
and experimental responses to two hammer tests under different forcing levels validates the
capability of the model to capture the effects of bolted joints on the dynamic responses of beam
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Fig. 25. Measured and simulated responses, at point B, for the jointed beam, hard hit test. (a) Measured acceleration.

(b) Simulated acceleration. (c) Envelopes of accelerations. (d) FFT of accelerations. ——, Measured results; - - - - -,

simulated results.
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Fig. 27. Measured and simulated responses, at point A, for the jointed beam, soft hit test. (a) Measured acceleration.

(b) Simulated acceleration. (c) Envelopes of accelerations. (d) FFT of accelerations. ——, Measured results; - - - - -,

simulated results.

(a) (b)
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x 10
-5

-250

-200

-150

-100

-50

0

50

100

150

200

250

Deformation(m)
-1 -0.5 0 0.5 1 1.5

x 10
-5

-800

-600

-400

-200

0

200

400

600

Deformation(m)

In
te

rn
al

 fo
rc

e(
N

)

In
te

rn
al

 fo
rc

e(
N

)
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Fig. 28. Measured and simulated responses, at point B, for the jointed beam, soft hit test. (a) Measured acceleration.

(b) Simulated acceleration. (c) Envelopes of accelerations. (d) FFT of accelerations. ——, Measured results; - - - - -,

simulated results.
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Fig. 29. Hysteresis loops, soft hit test. (a) Adjusted Iwan model no. 1. (b) Adjusted Iwan model no. 2.
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structures, as well as the efficacy of the MLFF neural network parameter identification procedure
to extract joint parameters.
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